How likely are we to cure paralysis?
Image credit: https://pixabay.com/photos/wheelchair-disability-lame-handicap-2489427/
Please leave the feedback on this challenge
Necessity
Is the problem still unsolved?
Conciseness
Is it concisely described?
Bounty for the best solution
Provide a bounty for the best solution
Bounties attract serious brainpower to the challenge.
[1]Lu, Y., Belin, S. & He, Z. Signaling regulations of neuronal regenerative ability. Curr. Opin. Neurobiol. 27, 135–142 (2014).
[2]Hiebert, G. W., Khodarahmi, K., McGraw, J., Steeves, J. D. & Tetzlaff, W. Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J. Neurosci. Res. 69, 160–168 (2002).
[3]Zheng, B. et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc. Natl Acad. Sci. USA 102, 1205–1210 (2005)
[4]Liu, K. et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 13, 1075–1081 (2010).
Creative contributions
Targeted electro-chemical neuron stimulation restores motor function in paraplegic patients

[1]Barolat G, Myklebust JB, Wenninger W. Enhancement of voluntary motor function following spinal cord stimulation--case study. Appl Neurophysiol. 1986;49(6):307-14. doi: 10.1159/000100160. PMID: 3499118.
[2]Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014 May;137(Pt 5):1394-409. doi: 10.1093/brain/awu038. Epub 2014 Apr 8. Erratum in: Brain. 2015 Feb;138(Pt 2):e330. PMID: 24713270; PMCID: PMC3999714.
[3]Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seáñez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018 Nov;563(7729):65-71. doi: 10.1038/s41586-018-0649-2. Epub 2018 Oct 31. PMID: 30382197.
Please leave the feedback on this idea
Designer cytokines and hyperinterleukin-6 as a promising treatment for paraplegia
[1]Leibinger, M., Zeitler, C., Gobrecht, P. et al. Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice. Nat Commun 12, 391 (2021). https://doi.org/10.1038/s41467-020-20112-4
[2]https://www.nature.com/articles/s41467-020-20112-4
[3]Fischer, D. Hyper-IL-6: a potent and efficacious stimulator of RGC regeneration. Eye (Lond.) 31, 173–178 (2017).
[4]Leibinger, M., Andreadaki, A., Diekmann, H. & Fischer, D. Neuronal STAT3 activation is essential for CNTF- and inflammatory stimulation-induced CNS axon regeneration. Cell Death Dis. 4, e805 (2013).
[5]Muller, A., Hauk, T. G. & Fischer, D. Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain 130, 3308–3320 (2007)
[6]Smith, P. D. et al. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64, 617–623 (2009).
Please leave the feedback on this idea