Can exosomes be used to treat Sarcopenia?
Image credit: Ryan McGuire from Pixabay
Please leave the feedback on this challenge
Necessity
Is the problem still unsolved?
Conciseness
Is it concisely described?
Bounty for the best solution
Provide a bounty for the best solution
Bounties attract serious brainpower to the challenge.
[1]Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, Chen LK, Fielding RA, Martin FC, Michel JP, Sieber C, Stout JR, Studenski SA, Vellas B, Woo J, Zamboni M, Cederholm T: Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014;43:748-759.
[2]von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 2010;1:129–133.
[3]Lo, J. H.-, U, K. P., Yiu, T., Ong, M. T.-, & Lee, W. Y.-. (2020). Sarcopenia: Current treatments and new regenerative therapeutic approaches. Journal of Orthopaedic Translation, 23, 38–52. https://doi.org/10.1016/j.jot.2020.04.002
[4]Naranjo J, D, Dziki J, L, Badylak S, F: Regenerative Medicine Approaches for Age-Related Muscle Loss and Sarcopenia: A Mini-Review. Gerontology 2017;63:580-589. doi: 10.1159/000479278
[5]Barone R, Macaluso F, Sangiorgi C, Campanella C, Marino Gammazza A, Moresi V, et al. Skeletal muscle heat shock protein 60 increases after endurance training and induces peroxisome proliferator‐activated receptor gamma coactivator 1 alpha1 expression. Sci Rep 2016;6:19781.
[6]Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise‐derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 2016;12:504–517.
[7]Murphy C, Withrow J, Hunter M, Liu Y, Tang YL, Fulzele S, et al. Emerging role of extracellular vesicles in musculoskeletal diseases. Mol Aspects Med 2018;60:123–128.
[8]Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, et al. Muscle releases alpha‐sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS ONE 2015;10:e0125094
Creative contributions
Feedback on the Proposed Usage of Exosomes
Please leave the feedback on this idea
Using CRISPR to target Myostatin Gene
[1]Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system BY YU ZHANG, HUI LI, YI-LI MIN, EFRAIN SANCHEZ-ORTIZ, JIAN HUANG, ALEX A. MIREAULT, JOHN M. SHELTON, JIWOONG KIM, PRADEEP P. A. MAMMEN, RHONDA BASSEL-DUBY, ERIC N. OLSON SCIENCE ADVANCES19 FEB 2020 : EAAY6812
[2]Cohen, S, Nathan, JA and Goldberg, AL (2015). Muscle wasting in disease: molecular mechanisms and promis- ing therapies. Nat Rev Drug Discov 14: 58–74.
[3]Lee, YS, Huynh, TV and Lee, SJ (2016). Paracrine and endocrine modes of myostatin actin. J Appl Physiol (1985) 120: 592–598.
[4]Prevention of Muscle Wasting by CRISPR/Cas9-mediated Disruption of Myostatin In Vivo Wei, Yuda et al. Molecular Therapy, Volume 24, Issue 11, 1889 - 1891
[5]Weng, S., Gao, F., Wang, J. et al. Improvement of muscular atrophy by AAV–SaCas9-mediated myostatin gene editing in aged mice. Cancer Gene Ther (2020). https://doi.org/10.1038/s41417-020-0178-7
[6]Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs Hakim, Chady H et al. Molecular Therapy - Methods & Clinical Development, Volume 1, 14002
[7]Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem. 2002 Dec 20;277(51):49831-40. doi: 10.1074/jbc.M204291200. Epub 2002 Sep 18. PMID: 12244043.
Please leave the feedback on this idea
Using Biological Scaffolds
[1]Barberi L, Scicchitano BM, De Rossi M, Bigot A, Duguez S, Wielgosik A, Stewart C, McPhee J, Conte M, Narici M, Franceschi C, Mouly V, Butler-Browne G, Musaro A: Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology 2013;14:273-292.
[2]Dziki J, Badylak S, Yabroudi M, Sicari B, Ambrosio A, Stearns K, Turner N, Wyse A, Boninger M, Brown E, Rubin J: An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort Study. Nature Regenerative Medicine 2016
[3]Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF: Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 2012;33:3792-3802.
[4]Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF: Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 2008;29:1630-1637.
Please leave the feedback on this idea
Natural compounds to treat sarcopenia
[1]Chang, Yun‐Ching, et al. "Oligonol alleviates sarcopenia by regulation of signaling pathways involved in protein turnover and mitochondrial quality." Molecular nutrition & food research 63.10 (2019): 1801102.
[2]Ebert, Scott M., et al. "Identification and small molecule inhibition of an activating transcription factor 4 (ATF4)-dependent pathway to age-related skeletal muscle weakness and atrophy." Journal of Biological Chemistry 290.42 (2015): 25497-25511.
[3]Ryu, Dongryeol, et al. "Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents." Nature medicine 22.8 (2016): 879-888.
Please leave the feedback on this idea
Targeting the Senescent Associated Secretory Phenotype (SASP)
[1]Klimczak A, Kozlowska U, Kurpisz M. Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Arch Immunol Ther Exp (Warsz). 2018;66(5):341-354. doi:10.1007/s00005-018-0509-7
[2]Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23-67. doi:10.1152/physrev.00043.2011
[3]Sugihara H, Teramoto N, Yamanouchi K, Matsuwaki T, Nishihara M. Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion. Aging (Albany NY). 2018;10(4):747-763. doi:10.18632/aging.101425
[4]Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M. Transcriptome signature of cellular senescence. Nucleic Acids Res. 2019 Aug 22;47(14):7294-7305. doi: 10.1093/nar/gkz555. Erratum in: Nucleic Acids Res. 2019 Dec 2;47(21):11476. PMID: 31251810; PMCID: PMC6698740.
[5]Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99-118. doi:10.1146/annurev-pathol-121808-102144
[6]Marjolein P Baar, Eusebio Perdiguero, Pura Muñoz-Cánoves, Peter LJ de Keizer, Musculoskeletal senescence: a moving target ready to be eliminated, Current Opinion in Pharmacology, Volume 40, 2018, Pages 147-155, ISSN 1471-4892, https://doi.org/10.1016/j.coph.2018.05.007.
[7] 30. Tsujinaka T et al.: Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest 1996, 97:244-249.
[8]O’Leary, M.F., Wallace, G.R., Bennett, A.J. et al. IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development. Sci Rep 7, 12997 (2017). https://doi.org/10.1038/s41598-017-13479-w
[9]Kale A, Sharma A, Stolzing A, Desprez PY, Campisi J. Role of immune cells in the removal of deleterious senescent cells. Immun Ageing. 2020;17:16. Published 2020 Jun 3. doi:10.1186/s12979-020-00187-9
[10]Inhibition of Natural Killer Cell Cytotoxicity by Interleukin‐6: Implications for the Pathogenesis of Macrophage Activation Syndrome Loredana Cifaldi Giusi Prencipe Ivan Caiello Claudia Bracaglia Franco Locatelli Fabrizio De Benedetti Raffaele Strippoli
[11]Guozhu Xie, Han Dong, Yong Liang, James Dongjoo Ham, Romee Rizwan, Jianzhu Chen, CAR-NK cells: A promising cellular immunotherapy for cancer, EBioMedicine, Volume 59, 2020, 102975, ISSN 2352-3964, https://doi.org/10.1016/j.ebiom.2020.102975.
Please leave the feedback on this idea